
Source of Acquisition
NASA Ames Research Center

Towards a Compositional SPIN

Corina S. PZskemu and Dimitra Giannakopoulou
{pcorina,dimitra)Qemail.arc.nasa.gov

QSS and FLIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract. This paper discusses our initial experience with introduc-
ing automated assume-guarantee verification based on learning in the
SPIN tool. We believe that compositional verification techniques such as
assume-guarantee reasoning could complement the state-reduction tech-
niques that SPIN already supports, thus increasing the size of systems
that SPIN can handle. We present a (‘light-weight” approach to evalu-
ating the benefits of learning-based assume-guaxantee reasoning in the
context of SPIN: we turn our previous implementation of learning for the
LTSA tool into a main program that externally invokes SPIN to provide
the model checking-related answers. Despite its performance overheads
(which mandate a future implementation within SPIN itself), this ap-
proach provides accurate information about the savings in memory. We
have experimented with several versions of learning-based assume guar-
antee reasoning, including a novel heuristic introduced here for generat-
ing component assumptions when their environment is unavailable. We
illustrate the benefits of learning-based assume-guarantee reasoning in
SPIN through the example of a resource arbiter for a spacecraft.
Keywords: assume-guarantee reasoning, model checking, learning

1 Introduction

This paper describes work performed in the context of the Reliable Software Sys-
tems Development (RSSD) project headed by the NASA Jet Propulsion Labora-
tory (JPL). The aim of RSSD is to improve the reliability and safety of software
systems to support human and robotic exploration of space. The emphasis is
on tool support for the development of verifiable software - tools will be appli-
cable at all stages of the software development, and will.target the C language
for implementation. For design, the tool that will be supported is SPIN [18] for
the following two main reasons. SPIN has been used extensively and success-
fully for industrial applications. Moreover, SPIN enables embedding of C code,
which allows to combine designs with implementations. The users of the tool are
thus offered the convenience of using a single environment for verification when
trmsitioning between different phases of the software development.

We present here a component of this project that is a collaborative effort
between JPL and NASA Ames, and which aims at investigating whether/how
compositional techniques can benefit SPIN in dealing with software designs. The
compositional techniques that we investigate are based on automated assump-
tion generation for assume-guarantee reasoning, as presented in [5,10,13]. The

2 Authors Suppressed Due to Excessive Length

techniques were implemented in the LTSA tool [l] for the analysis of design
models encoded as finite-state labelled transition systems with blocking com-
munication. Although these techniques have proven effective in the LTSA [25],
there is no guarantee that they will be (as) successful in the context of other
model checkers. For example, as seen in 1141, the savings obtained with auto-
mated assume-guarantee reasoning at the design level with LTSA were more
pronounced than those obtained at the (Java) code level with Java PathF’inder
[30]. The LTSA is by nature a compositional tool, which means that any com-
ponent in isolation can be targeted for analysis, without the need to provide
an environment to turn it into a “closed” system, which is the w e for a Java
component. Moreover, the amount of detail at the code level makes state spaces
larger and may “hide” the size of the savings obtained from a particular ap-
proach. SPIN lies somewhere in between the two tools: SPIN’S input language -
Promela - is closer to a programming language than the input language of the
LTSA, but SPIN is a design as opposed to code-level tool.

The work reported here is a first study of the issues and benefits of introduc-
ing compositional techniques into SPIN (which is not inherently a compositional
tool). Our approach has been to make such an evaluation in a “light-weight”
fashion, that is, to avoid re-implementing our algorithms within SPIN itself. We
will describe how we turned our existing implementations into a main program
that invokes SPIN to provide answers to specific model checking questions. As
will be discussed later, such an approach has a number of disadvantages, as for
example high time overheads. However, we claim that it provides a good way for
researchers to make a quick evaluation of the potential benefits of compositionai
techniques in their model-checking environment. After all, the main interest in
model checking is to obtain savings in memory, and these can be evaluated ac-
curately with the framework that we propose.

We will discuss the technical details involved in the implementation of our
“light-weight” compositional framework for SPIN. For simplicity, we only look
into Promela programs where components communicate in a “rendez-vous” fash-
ion (Le., Promela channels of size 0). Note that our evaluations will also include a
novel heuristic presented in this paper for generating component interface speci-
fications using learning. The description of our approach will be given in terms of
a running example of a client-server system. We will then discuss the application
of our techniques to the larger case study of a resource arbiter for a spacecraft,
where learnirrg-based assume-guarantee reasoning achieved significant memory
gains.

To summarize, the contributions of this paper are: 1) an approach for fast and
easy evaluation of the benefits that compositional verification techniques based
on learning can bring in the contexk of m y model checker, 2) a description of the
technical details involved in the implementation of this approach in SPIN, and
3) the discussion of a novel heuristic for learning assumptions of components in
isolation, and 4) the application of our approach to a realistic resource arbiter
for a spacecraft, for which it achieved significant memory gains over traditional
monolithic model checking.

Towards a Compositional SPIN 3

The remainder of the paper is organized as follows. We give background
on assume-guarantee reasoning and learning in Section 2. A description of our
proposed approach is provided in Section 3, with the technical details of its im-
plementation in SPIN presented in Section 4. Section 5 discusses our experience
with applying our approach to the resource arbiter case study. Finally, Section 6
presents related work and Section 7 concludes the paper.

2 Background

2.1 Assume Guarantee Reasoning

We address the problem of checking designs using model checking. We use com-
positional techniques for increased scalability. For simplicity, let us consider two
software components MI and M2 (represented as finite state labeled transition
systems) and a safety property P (expressed as a finite state automaton). Rea-
soning about more than two components will be discussed later in Section 3.

The goal is to check if the two components operate correctly together to
achieve the desired property, i.e. to check MlllM2 P using model check-
ing techniques. Here, the parallel composition operator 11 denotes the product
construction for finite state automata, where the behavior of two components is
combined by synchronization of common actions and interleaving of remainig ac-
tions. Property P encodes the desired interactions between components. Check-
iiig i L 1 1 p 2 1 ulleLbay rllaY ue cuu expensi-ve (there may m t be emugh timP
and memory resources to complete the computation), so we breakup the verifi-
cation into two smaller subproblems, i.e. we check MI and Mz separately, using
assume-guarantee reasoning.

In the assume-guarantee paradigm a formula is a triple (A) M (P) , where M
is a component, P is a property, and A is an assumption about M’s environment.
The formula is true if whenever M is part of a system satisfying A, then the
system must also guarantee P.

The simplest assume-guarantee proof rule shows that if (A) MI (P) and
(true) M2 (A) hold, then (true) MI 11 M2 (P) also holds. This proof strategy
can also be expressed as an inference rule as follows:

--- X l l l l I L D A:- - ~ l - ~ - - - - I,

(Premise 1) (A) MI (P)

Thus, using this rule we can show that P holds on MI 11 M2, by checking
(A) MI (P) and (true) M2 {A) separately. More elaborate rules can be used
for this style of reasoning [5]. The underlying aim for all such rules is to make
model checking of their premises cheaper, in terms of time and in particular
consumed memory, than non-compositional verification. To achieve this, the as-
sumptions have to be much smaller than the analyzed components. Coming up
with appropriate assumptions is traditionally a difficult, manual process.

4 Authors Suppressed Due to Excessive Length

Fig. 1. The L* learning algorithm

In previous work we proposed to use an off-the-shelf learning algorithm, L*, to
derive appropriate assumptions automatically- Initial approximate assumptions
- Y arp e' mrad11ally rpfinpd by =erns of learning from counterexample traces obtained
by model checking assume guarantee triples.

2.2 The L* Learning Algorithm

The learning algorithm used by our approach was developed by Angluin and
later improved by Rivest and Schapire. We refer to the improved version by the
name of the original algorithm, L*. L* learns an unknown regular language and
produces a DFA that accepts it - see Figure 1. Let U be an unknown regular
language over some alphabet E. In order to learn U , L* needs to interact with a
Minimally Adequate Teacher. The Teacher must be able to correctly answer two
types of questions &om L*. The f is t type is a membership query, consisting of
a string s E E*; the answer is true if s E U , and false otherwise. For the second
type of question, the learning algorithm generates a conjecture, Le., a candidate
DFA A whose language the algorithm believes to be identical to U . The answer
is true if L (A) = U . Otherwise the Teacher returns a counterexample, which is
a string s in the symmetric difference of C (A) and U .

At a higher level, L* creates a table where it incrementally records whether
strings in E* belong to U. It does this by making membership queries to the
teacher. At various stages L* decides to make a conjecture. It constructs a can-
didate automaton A based on the information contained in the table and asks
the Teacher whether the conjecture is correct. If it is, the algorithm terminates.

Towards a Compositional SPIN 5

Fig. 2. Tool Architecture

Otherwise, L* uses the counterexample returned by the Teacher to extend the
table with strings that witness differences between L (A) and U .

Characteristics of L*. L* is guaranteed to terminate with a minimal au-
tomaton A for the unknown language U . The conjectures made by L* strictly
increase in size; each conjecture is smaller than the next one, and all incorrect
conjectures are smaller than A. Therefore, if A has n states, L* makes at most
n - 1 incorrect conjectures. The number of membership queries made by L* is
0 (kn2 + n logm) , where k is the size of the alphabet of U , n is the number of
states in the minimal DFA for U , and m is the length of the longest counterex-
ample returned when a conjecture is made.

3 Tool Architecture

We present here an initial study for a tool-based approach to compositional
verification, that uses the L* algorithm to build assumptions and the SPIN
model checking tool to check assume guarantee triples. Although using learning
to automate assume guarantee reasoning was introduced in our previous work,
there are some novel ideas that we propose here:

- We present a generic tool architecture that uses learning for automated
assume guarantee reasoning for multiple components. By generic, we mean
that the tool can be instantiated with different model checking tools for
checking assume guaraDtee triples; we discuss the use of SPIN here.

- The tool can be used for checking different assume guarantee rules (as be-
fore), but in addition we present a novel heuristic that allows us to derive the
interface specification for a component M I , in the absence of a specification
of its environment (Le. M2). This interface specification can be used to check
if the component MI behaves correctly in multiple contexts. In the past, we

6 Authors Suppressed Due to Excessive Length

have experimented with an approach that uses conformance checking [lo].
Instead of using this expensive approach, we present a light-weight heuristic
that enables cheaper generation of precise interface specifications.

The architecture of the compositional verification tool is illustrated in Fig-
ure 2. The architecture is derived from our previous work on compositional verifi-
cation and the implementation of our algorithms in the context of the LTSA tool,
both within the core of the LTSA [lo], and as an LTSA plugin [l]. The goal is
to use learning to derive an assumption A such that the assume guarantee triple
(A) MI (P) evaluates to true. The weakest assumption A, under which MI sat-
isfies P is such that, for any environment component ME, (true) MI 11 ME (P) if
and only if (true) ME (&). In our framework, L* attempts to build A, through
iterative learning. For L* to learn A,, we need to provide a Teacher that is able
to answer the two different kinds of questions that L* asks. Our approach uses
model checking to implement such a Teacher.

Membership Queries To answer a membership query for s the Teacher sim-
ulates s to check if it may lead to a violation. For simplicity, our current im-
plementation for SPIN reduces the simulation to model checking. If there is no
violation, it means that s E L (A,), because MI does not violate P in the con-
text of s, so the Teacher returns true. Otherwise, the answer to the membership
query is false.

Conjectures Our framework uses the conjectures returned by L* as interme-
diate candidate assumptions Ai. The teacher uses two oracles: Oracle 1 guides
L* towards a conjecture that is strong enough to make {A) MI (P) true. Once
this is accomplished, the resulting conjecture may be too strong, in which case
our framework uses Oracle 2 to guide L* towards a weaker conjecture. There are
many options for implementing oracle 2, and we discuss some of them below.

Oracle 1 checks (Ai) MI (P) . If this does not hold, the model checker returns
a counterexample. The Teacher informs L* that its conjecture A, is not correct
and provides the counterexample to witness this fact. If, instead, (A,) MI (P)
holds, the Teacher forwards Ai to Oracle 2.

Oracle 2 needs to ensure that the candidate assumption is indeed the weakest.
In the context of this work, we have implemented different versions for this oracle.

- If component Mz is available, then the oracle checks (t rue) M:! (Ai) (as in
our previous work). If the result of model checking is true, the teacher returns
true. Whether Ai represents the weakest assumption or not, our framework
then terminates the verification because, according to the assumeguarantee
compositional rule, P has been proved on MI 11 Mz. If model checking re-
turns a counterexample, the oracle performs counterexample analysis. If the
counterexample indicates a real error, the framework stops and the error is
reported to the user. Alternatively, if the counterexample indicates that the
current candidate assumption needs to be refined, it is returned to guide L*.

Towards a Compositional SPIN 7

- We have extended our implementation to reasoning for n components MI JIIM2JI ... Mn.
The system is decomposed into two parts MI and M; = Mzll...llM, and the
leaning algorithm is invoked recursively for checking the second premise of
the rule.

3.1 Generation of Interface Specifications

As discussed, Oracle 2 is responsible for ensuring that an assumption A, shown
strong enough by Oracle 1, is not too strong. In other words, the assumption
should include all traces over the alphabet of the assumption, in the context of
which M I satisfies the property P. By alphabet we mean the set of events that
are involved in a state machine.

We discuss here the case where the the alphabet of the property and the
alphabet of the assumption are the same. We restrict ourselves to this case for
simplicity, but also because it covers all the examples that we discuss in this
paper. We axe currently studying different cases and plan on extending this
heuristic for those.

Let TA denote the set of all traces over the alphabet of the assumption
A. Then A should include all traces in TA that satisfy the property; if some
trace t E TA that satisfies P is not in A, then A is obviously too strong, SO t
must be returned to the learning algorithm for the assumption to be refined.
The above check can be formulated as P J= A, and can be performed by a
model checker, with the counterexamples returned to the learning algorithm.
Our proposed heuristic for Oracle 2 for generating interface specifications is io
therefore implement P A.

Note that our heuristic is not always accurate, meaning that it may fail to
report traces that the assumption does not include even though it should. The
traces that it may miss are traces that violate P but that will never be exercised
in the context of the component M I . These traces are the traces of !Ml}/!P,
where !MI denotes the complement of M I , and similady for P. Computing the
complement of M I involves determinization, which may increase the state-space
of MI exponentially, in the worst case. For this reason, we do not include this
check in our heuristic. One may argue that many components do not exhibit this
worst-case complexity. For such components, however, rather than computing
!MIJI!P, it would make more sense to construct the assumption directly, using
the algorithm presented in our previous work [13]. Learning was introduced in
order to avoid the potential complexity of this computation [lo].

It is worth mentioning that, although our heuristic as currently implemented
may not always compute the weakest assumption, our experiments discussed
later in the paper demonstrate that it is quite effective in practice.

4 Implementat ion

Our implementation makes use of our previous Java implementation of L*, but
extended with support for analysis of multiple components through recursive

8 Authors Suppressed Due to Excessive Length

m t y p e = {ul, u2, Nobody);
chan request = [O] of {mtype);
chan cancel = [O] of {mtype);
chan grant = [Ol of {mtype);
chan deny = [Ol of {mtype);

active proctype s e r v e r 0 {
mtype resUser = Nobody;
mtype u;
SO: i f

:: request?u ->
i f
:: (resUser == Nobody) -> grant!u; resUser = u; goto SO;
:: e l se -> deny!u; goto SO;
f i ;

i f
:: (resUser == u) -> resUser = Nobody; goto SO;
:: e l se -> goto SO;
f i ;

:: cancel?u ->

f i ;
3

Fig. 3. Promela code for server

invocation, and for the new heuristic for Oracle 2. The learning now runs as a
stand-alone application that invokes SPIN (from within Java) to answer queries
and conjectures.

We consider here only a subset of Promela, where components are Promela
processes that communicate through rendezvous channels. We consider safety
properties that refer to the rendezvous communication between components.
We leave for future work the extension of the approach to handling the full
Promela language. W-e selected this subset of Promela because it bears a close
correspondence to the type of models that we analyze in the context of LTSA.
Moreover, several systems can be described in this subset. For example, the
work presented in 111,271 shows how abstracted Java and Ada programs can be
translated into this exact subset of Promela.

We illustrate the implementation on a simple Promela model for a client
server application - see Figure 3 and Figure 4(left). The model has a server and
two clients that communicate through global rendezvous channels. Note that the
MER case study is a more complex version of this type of system.

The clients send requests to make a reservation for using a common resource,
they wait for the server to grant the reservation, they use the resource, after
which they cancel the reservation. The server can grant or deny a request, such
that the resource is used only by one client at a time. We anaIyzed a property
stating that the resource shall be used mutually exclusive.

Towards a Compositional SPIN 9

proctype client (mtype u) {
Init: if

:: request!u
fi;

PendingReservation:
if
: : grant?eval (u)
::deny?eval(u) -> goto Init;
fi;

if
:: cancel!u -> goto Init
fi;

Pendingcancel :

3

trace {
QO: if

::grant?u2 -> goto 94;
::grant?ul -> goto 95;
fi;

::cancel?u2 -> goto 40;
fi;

::cancel?ul -> goto QO;
fi;

44: if

Q5: if

3

Fig. 4. Promela code for client (left) and mutual exclusion property (right)

There are many ways of encoding (safety) properties in SPIN: i.e. as basic
assertions, never claims or trace assertions [19]. We chose to encode properties as
trace assertzons: the types of safety properties that we typically encounter refer
to valid sequences of channel operations, and trace assertions are specifically de-
signed for formulating such sequences. In Section 5 we discuss other formalisms
for encoding assume guarantee triples. Figure 4(right) shows the trace asser-
tion for the mutual exclusion property. The assertion specifies the correctness
requirement that receive operations on channel grant with u l and u2 aiternate
with receive operations on cancel with u l and u2, respectively. In other words,
for mutual exclusion to be guaranteed, when a user is granted the resource, then
this user needs to cancel it before it gets granted to a different user. The trace
assertion defines an automaton that monitors the system execution (it changes
state when a chanel operation that is within its scope is executed).

In order to analyze this model using our learning based implementation,
we first brake up the system into its components, i.e. processes c l i e n t (u l) ,
clzent(u2) and server(). We also need to provide the alphabet of actions for the
candidate assumptions. As discussed in Section 3.1, we set the alphabet of the
assumptions to be the same as the alphabet of properties.

Checking Assume Guarantee Triples In our approach, we use SPIN to
answer queries and oracles, which are encoded as assume guarantee triples of
the form (A} M (P). Here A denotes a deterministic finite state automaton that
may encode traces (in the case of queries) or candidate assumptions generated
by L*. Property P is a also a deterministic finite state automaton (encoded
as a trace assertion). The assumptions define execution environments for the
components under analysis. We therefore encode them as Promela processes that
run in parallel with the analyzed components (and thus restrict their behavior).
The assumption A and the property P are used to examine the component M

10

active proctype query 0 C

Authors Suppressed Due to Excessive Length

/active proctype CandidateAssumption0 C

Q2 :

q3 :

3

grant ! ul ;
grant ! u2 ;

3

active proctype UniversalEnvO C
do /* actions unmatched in Ull Ih */
:: request?ul
:: deny!ul

/* actions of other users */
:: grant312
: : cancel!u2

:: cancel!u3

:: cancel!u4
:: grant?u5
:: cancel!u5
od

:: grant?u3

:: grant?u4

3

I qo:

91:

if
:: grant!ul-> goto q2;
:: grant!u2-> goto 93;
:: cancel?ul-> goto 91;
fi;
if
:: grat!ul-> goto 91;
:: grat!u2-> goto 91;
:: cancel?ul-> goto 91;
:: cancel?u2-> goto 41;
fi;
if

:: cancel?ul-> goto 90;
fi;
if
:: cancel?ul-> goto 41;
:: cancel?u2-> goto QO;
fi;

:: grant!ul-> goto 91;

Fig. 5. Promela code for a query, an assumption and the universal environment

and to check whether behaviors that are allowed by the assumption may lead to
a property violation.

To check an assume guarantee triple, the teacher first creates a file that en-
codes the assumption as a Promela process and the property as a trace assertion,
and it invokes SPIN i.e., it executes the following commands:

spin -a M1.promela
cc -0 pan pan.^ -DSAFETY
. /pan -E

The teacher waits for the verification to complete and it parses the output of the
verification process to check if there were any assertion violations, in which case
it returns false (together with the counterexample reported by SPIN) to the L*
algorithm; otherwise, it returns true. All these steps are automated.

As an example, Figure 5 shows the Promela process for checking a query on
component client (ui) for string “grant ! ul ; grant ! u2 ; ”. Figure 5 also shows
the Promela process for a CandidateAssumption for client (ul) .

We should note that both properties and assumptions are global, i.e. they may
refer to actions that are not local to the component under andysis. In order to
check in isolation whether a component violates a global property, we need to
provide an environment that substitutes the rest of the system, as typically per-
formed in model checking. In the context of checking assume-guarantee triples,
the environment is the universal environment as restricted by the assumption. To
simulate that, we provide for each component a universal environment for those

Towards a Compositional SPIN 11

Fig. 6. MER Architecture

rendezvous actions that are not matched with actions in the provided assump-
tion. For example, figure 5 shows such a closing environment for client(u1)
- in an infinite loop, the process performs rendezvous for the actions that are
unmatched by c l i e n t (ul) and the process encoding the assumption. Note that
the same universal environment is used for checking all the queries and oracles
for one particular component.

5 Analysis of the MER Resource Arbiter

5.1 Description

We experimented with our approach in the context of a model derived from a
component of the flight software for JPL’s Mars Exploration Rovers (MER) - the
MER arbiter (see Figure 6). The MER software contains 11 user threads. Each
thread serves one specific application, such as imaging, controlling the robot
arm, communicating with earth, and driving. There are 15 shared resources on
the rover, to which access must be controlled by an arbiter, which is the target of
our verification. The arbiter module prevents potential conflicts between resource
requests, and enforces priorities. For instance, it would not make sense to start a
communication session with earth while the rover is driving. The arbiter module
consists of about 3,000 lines of source code, written in ANSI standard C. The
arbiter system has been analyzed with SPIN before, in a non-compositional way
- a detailed description can be found in [ZO].

5.2 Analysis

We present here the results of applying compositional analysis for a subproblem
with 5 users and 5 resources. A design-level Promeia mode1 of the arbiter was
created based on available documentation (3000 lines of code) and was used
to check several properties. We report here the results for checking a mutual

12 Authors Suppressed Due to Excessive Length

Table 1. Arbiter Analysis Results

exclusion property (P) stating that communication and driving can not happen
at the same time.

The compositional techniques discussed in this paper work on a specific or-
dering of the components in the system. For the MER system, we ordered the
user components first as (Ul ... Us) and the arbiter process last as (ARB). As
described in [8], compositional techniques tend to be sensitive to different de-
compositions of a system. The reason we selected this particular ordering was
that part of the project involved experimenting with generating assumptions for
the arbiter in the absence of an arbiter component.

We then used the learning tool described in Section 3 to generate automati-
cally assumptions AI ... A5 such that:

(Ad u1 (P)
(A2) u2 (Ad
(A3) u3 (A2)
644) u4 (A3)
I A \ T T / A \
P S I “ 5 \ n 4 /

(true) ARB (As)

For this purpose, we manually created environments that exercise each com-
ponent, as described in the previous section. We also specified the interface
actions to be used for building the assumptions. We experimented with the re-
cursive technique that we have implemented for handling multiple components
and with the heuristic approach, that analyzes one component at a time. In
both cases we were able to compute assumptions for the above premises to hold.
Hence, according to the compositional rule presented in Section2, we concluded
that the system U~IlU2llU3llU4JlU511ARB indeed satisfies P.

The results of analysis applied to the arbiter system are shown in Table 1.
We used a 2.2 GHz dual processor Pentium with 1 Gb of memory running Red
Hat Enterprise Linux WS. In the table, row “Monolithic” reports the results
obtained from the verification of the system in a non-compositional way, and rows
“Recursive” and “Heuristic” report the results obtained by the application of the
recursive learning scheme and the heuristic described in Section 3.1, respectively.
Specifically, we report the memory and time consumed for verification of the
system. For the compositional techniques, the reported time and memory refer
to the maximum time or memory consumed to for checking a single premise.
They do not include the process of generating the assumptions (reported in
Table 2), but rather the process of applying the assume-guarantee premises once
the assumptions are available.

Towards a Compositional SPIN 13

Table 2. Cost of Assumption Generation

The reported times are divided into three parts: tmodel is the time to create
a C model from a Promela model, tcompde is the compilation time, and t r ,
is the time to run the specific verification task in SPIN. We also report the
size of the msumptions used for compositional verification. Using the recursive
algorithm yields assumptions that have 12 states (AI , A2 and A3) and 6 states
(A4 and As) while the heuristic approach yields assumptions of size 12 for each
component (for this case study, all the assumptions generated using the heuristic
approach are the weakest). We need to study further the trade-offs between the
two learning approaches: the heuristic approach has the advantage that it can
be used for the analysis of a component in isolation (in the absence of the rest of
the over-all system, and maybe even before it is available), while the recursive
approach may yield smaller assumptions (as it is the case here). This is expected
to happen for some systems, because the recursive approach has knowledge of
the environment of each component, and may therefore produce stronger (and
smaller) assumptions.

The results indicate that compositional verification can achieve significant
memory savings over non-compositional verification.

Cost of assumption generation Table 1 reports the results of compositional
analysis using assumptions that are already available. Let us now analyze the cost
of building these assumptions using learning based techniques. Table 2 reports
the results of running the two learning approaches for assumption generation: for
the recursive approach, we report the number of queries, the number of oracle
invocations and the total time for running the algorithm (this includes t~~~~~ -
the time of running the Java implementation that makes external calls to SPIN
- plus tsprrv - the total time of running SPW multiple times for ansewring
queries and conjectures). For interface generation, we report the same data for
the generation of an assumption for one component (the results for the rest of
the components are similar). Table 2 also reports M E M L ~ ~ ~ ~ -the memory con-
sumed by our Java implementation (this does not include the memory consumed
by a SPIN run - which is reported in Table 1.

Our experiments indicate a serious time overhead, where a dominant factor
is the compilation time for queries. For example, there are 852 queries made for
the generation of the interface specification of component UI, and the cost of
running a query is 0.045s + 1.283s + 0.011s, where the compilation time 1.283s -
clearly dominates.

Therefore we looked into ways of reducing the compilation time overhead for
queries. In particular, we experimented with the SPIN’S feature that allows for
the separate compzlation of a model and of properties (written as never claims).

14 Authors Suppressed Due to Excessive Length

never
do
:: grant-ul -> break
:: !grant-ul && !grant-u2 && !cancel-ul && !cancel-u2
od ;
do
:: grant-u2 -> break
:: !grant-ul && !grant-u2 && !cancel-ul && !cancel-u2
od;
do
:: !grant-ul && !grant-u2 && !cancel-ul && !cancel-u2
od ;

3

Fig. 7. A query encoded as a never claim

Note that never claims can be used not only to define correctness properties,
but also to restrict the search of the verifier to a user-defined subset of the
system [19]. It is in the latter fashion that we use never-claims to attempt more
efficient checking of queries.

As an exampIe, Figure 7 shows the never cIaim used for checking a query
“grant!ul; grant!u2;” (the analog of the query in Figure 5). Here grant-ul,
grant-u2, cancel-ul and cancel-u2 are global boolean flags added to the Promela
X G & ~ ,-f 8 c=mp=r,zr,t. They are set te trae ..rhene:rer 2 correspndinv r ~ n r l ~ o v m i s

occurs and are reset to false on any other action. For example, grant-ul is set
to true (while all the other flags are reset to false) atomically with grant?ul.
The reason we use these flags is that SPIN does not allow rendezvous actions
in never claims. The effect is that the never claim restricts a verification run
to all the states that conform to the trace (note that the flags need to be reset
after every system step execution, to make sure that the never claim restricts
correctly the system). For technical reasons (SPIN does not allow never claims
and trace assertions to be checked at the same time), we changed the encoding
for properties (as monitors). The encoding of queries as never claims allows us
to compile the component model combined with the property only once and to
compile separately the never claims for each query. Note that the same approach
can be used for encoding assumptions.

With this new encoding, we obtained a significant reduction in running time.
For example, the cost of heuristic interface generation for UI was reduced by
a factor of 4 (from 818.213s to 185.185s). We expect a similar reduction to be
obtained for running the recursive algorithm, and even further reduction for the
separate compilation of assumptions.

0------- ---

5.3 Discussion

The implementation described is a first step towards introducing learning-based
assume guarantee reasoning in the SPIN model checker. The purpose of this

Towards a Compositional SPIN 15

work is fast experimentation with the algorithms in the context of examples
encoded in Promela. We intend to explore several directions for improving the
performance of to this approach in future stages of the project.

The current implementation invokes SPIN for each query and for the two
oracles. This involves creating appropriate Promela files, compiling them and
running the verification at each step. While this approach works well for small
examples, for realistic (large) examples, parsing and compiling the Promela files
at each step is costly in terms of time. We believe that a first step towards a
better integration will be the creation of specialized algorithms for efficient trace
simulation (for checking queries) and for checking properties in the presence of
restricting assumptions; these algorithms should allow for separate compilation
of models, assumptions and properties.

I

We should note that we encountered similar timing overheads with the imple-
mentation of the learning assume-guarantee approach as a plugin for the LTSA
model checker [l], as compared to our initial implementation within the core of
the LTSA tool [lo]. In that implementation, we encountered a signFficant perfor-
mance overhead due to the fact that the plugin communicates with the LTSA
by placing descriptions of the models in the Edit tab. As a result, each query
or conjecture would require parsing and computing the component model. The
avenue we took to solve the problem was to implement our techniques in the core
of the LTSA and expose them to the LTSA plugins, while keeping the interfacing
fer our asst?m-e-guazztee reasmhg as an LTSA plugin, As ;I result, the running
time of our iterative learning algorithms is low.

For example, the last two columns in Table 2 show the results of running the
LTSA implementation for the arbiter case study. The results indicate that an
implementation directly in SPIN is likely to similarly improve the performance
significantly. Note that part of the gain of having the learning algorithms run
within LTSA is that the LTSA can store the results of a particular composition
(for a component, for example) and use it in the analysis of multiple properties.
The impact can be great in the evaluation of queries, and it may be worth adding
this capability in SPIN, for cases where that would be appropriate (when, for
example, the component state space is manageable).

A nice feature that the LTSA sxpports is that the plugin can extend the user
interface of the tool, and can be invoked from the LTSA’s graphical user interface.
As a result, the user can easily customize their assume-guarantee problem, Le.,
select the modules and properties that participate in a compositional proof, as
well as the rule that is to be applied. In the future, we would like to take a similar
approach in integrating our techniques using XSpin. To achieve this, we need to
understand better what mechanisms are available or can be added for achieving
Spin/XSpin extensions. Ideally, we would like to display all the components (i.e.
processes) in a Promela specification, and to allow the user to choose which
components to analyze using assume guarantee reasoning.

16 Authors Suppressed Due to Excessive Length

6 Related Work

Assume-guarantee reasoning [9,16,22,28] is based on the observation that large
systems are being build from components and that this composition can be
leveraged to improve the performance of analysis techniques. To reason formally
about components in isolation, some form of assumption (either implicit or ex-
plicit) about the interaction with, or interference from, the environment has to
be made. Several frameworks have been proposed to support this style of rea-
soning. For example, the Calvin tool [12] provides support for assume guarantee
reasoning €or the analysis of Java programs, while the Mocha toolkit [3] provides
support for modular verification of components with requirement specifications
based on the Alternating-time Temporal logic. However, the practical impact
of these previous approaches has been limited because they require non-trivial
human input in defining appropriate assumptions.

As mentioned, in previous work 110,131, we have developed techniques for
performing assume-guarantee reasoning of software in a fully automated fash-
ion. Our techniques target components with message-passing communication - a
paradigm used in NASA mission critical software (eg. MER code). The approach
presented in [lo] uses L* to build incrementally appropriate assumption, and it
forms the basis of the work presented in this paper. Since then, several assume
guarantee reasoning frameworks that use L* for learning assumptions have been
developed - [4] (see also[2]) presents a symbolic approach to assumption leaning,
while [6,7] use learning based assume guarantee verification for communicating
finite state mtcmak spoci5c&io~s extracted from C cnde The work presented
here is a first attempt to introduce automated assume guarantee reasoning in
SPIN. In the past [27] we have studied the use of assume guarantee reasoning
in the context of SPIN - however, in that work, the assumptions were provided
manually by the user.

A related effort [17] includes a framework for thread-modular abstraction
refinement, in which assumptions and guarantees are both refined in an iterative
fashion. The framework applies to programs that communicate through shared
variables, and uses predicate abstraction techniques for the iterative construction
of assumptions.

The problem of generating an assumption for a component is similar to the
problem of generating component interfaces to deal with intermediate state ex-
plosion in CRA. Several approaches have been defined for automatically abstract-
ing a component’s environment to obtain interfaces [8,23]. These approaches bo
not address the incremental refinement of interfaces.

A number of machine learning approaches has been investigated recently in
the context of software verification, with a goal different then ours. One approach
uses learning for computing the set of reachable states in regular model checking
[29]. The work in [15] uses the L* to generate a model of a software system
in a black box fashion; the model then be fed to a model checker €or analysis.
Similarly, [21] presents learning techniques for building software models for ver-
ification, while a recent approach [24] uses inductive learning to build precise
abstractions for program analysis.

Towards a Compositional SPIN 17

7 Conclusions and Future Work

In this paper we discussed our initial experience with automated assume guar-
antee verification based on learning in the context of SPIN. We presented a
light-weight tool that uses learning to build assumptions incrementally and that
makes external calls to SPIN to provide all the model checking related answers.
We discussed the application of the tool for the verification of a realistic soft-
ware system - the resource arbiter for a space craft - which resulted in significant
memory gains as compared to traditional monolithic model checking-.

While this light-weight implementation allows for a quick evaluation of the
merits of learning based assume guarantee reasoning in SPIN, it may result in
serious performance overheads - and we discussed in the paper ways of improving
our implementation. In the future, we plan to work towards a tighter integration
in SPIN and to investigate how we can further improve the performance of our
approach. One possible way is to run in parallel the checks for multiple queries.
We also plan to study how our algorithms extend to alternative communication
mechanisms (buffered message passing) and to handling liveness properties -
the work on learning infinitary regular sets [26] may be a good start in this
direction. Another issue that we want to investigate is to make a h e r distinction
in our algorithms between the interface actions of a component (Le. to distinguish
between channel read and write operations) and to study how this affects our
approach.

Acknowledgements

The authors would l i e to thank Gerard Holzmann for his invaluable support
and guidance throughout this project.

References

1. Learning-Based Assume-Guarantee Verification, volume 3639 of Lecture Notes in
Computer Science. Springer, 2005.

2. R. Alur, P. Cerny, P. Madhusudan, and W. Nam:. Synthesis of interface specifica-
tions for java classes. In Proc. of 32nd POPL, pages 98-109, 2005.

3. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran. MOCHA: Modularity in model checking. In Proc. of the Tenth Int.
Conf. on Comp.-Aided Verification (CAV), pages 521-525, June 28-July 2, 1998.

4. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by
learning assumptions. In Proc. of 17th International Conference CAV, pages 548-
562, 2005.

5. H. Barringer, D. Giannakopouiou, and C. S. P&isHeanu. Proof rules for automated
compositional verification through learning. In Int. Workshop on Specification and
Verification of Component-Based Sys., Sept. 2003.

Abstraction and
assumeguarantee reasoning for automated software verification. Technical report,
WACS, 2004.

6. S. Chaki, E. Clarke, D. Giannakopoulou, and C. Pasareanu.

18 Authors Suppressed Due to Excessive Length

7. S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee
reasoning for simulation conformance. In Proc. of 17th International Conference
CAV, pages 534-547, 2005.

8. S. C. Cheung and J. Kramer. Context constraints for compositional reachability
analysis. ACM Bans. on Soft. Eng. and Methodology, 5(4):334-377, Oct. 1996.

9. E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In
Proc. of the Fourth Symp. on Logic in Comp. Sci., pages 353-362, June 1989.

10. J. M. Cobleigh, D. Giannakopoulou, and C. S. P&keanu. Learning assiunptions
for compositional verification. In 9th International Conference for the Construction
and Analysis of Systems (TACAS 2003), volume 2619 of LNCS, Warsaw, Poland,
2003. Springer.

11. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pbkeanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models &om Java source code. In Proc.
of the 22"d Int. Conf. on Soft. Eng., June 2000.

12. C. Flanagan, S: N. F'reund, and S. Qadeer. Thread-modular verification for shaxed-
memory programs. In Proc. of the Eleventh European Symp. on Prog., pages 262-
277, Apr. 2002.

13. D. Giannakopoulou, C. S. P%skeanu, and H. Barringer. Assumption generation

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

for software component verification. In Proc. of the Seventeenth IEEE Int. Conf.
on Auto. Soft. Eng., Gept. 2002.
D. Giannakopoulou, C. S. P&&eanu, and J. M. Cobleigh. Assume-guarantee ver-
ification of source code with design-level assumptions. In Int. Conf. on Soft. Eng.,
pages 211-220, May 2004.
A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In Proc. of
the Eighth Int. Conf. on Tools and Alg. for the Construction and Analysis of Sys.,

0. Grumberg and D. E. Long. Model checking and modular verification. In Proc.
of the Second Int. Con$ on Concurrency Theory, pages 250-265, Aug. 1991.
T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference.
In Proc. of PLDI, pages 1-13, 2004.
G. J. Holzmann. The model checker SPIN. IEEE Trans. on Soft. Eng., 23(5):279-
295, May 1997.
G. J. Holzmann. The SPIN Model Checker : Primer and Reference Manual.
Addison-Wesley Publ., 2003.
6. J. Holzmann and R. Joshi. Model driven software verification. In Proc. of 11th
International SPIN Workshop, pages 76-91, Oct. 2004.
H. Hungar, 0. Niese, and B. Steffen. Domain-specific optimization in automata
learning. In Proc. of 15th International Conference CAV, pages 315-327, 2003.
C. B. Jones. Specification and design of (parallel) programs. In R. Mason, editor,
Information Processing 83: Proceedings of the IFIP 9th World Congress, pages
321-332. IFIP: North Holland, 1983.
J.-P. Krimm and L. Mounier. Compositional state space generation &om Lotos
programs. In Proc. of the Third Int. Workshop on Tools and Alg. for the Con-
struction and Analysis of Sys., pages 239-258, Apr. 1997.
A. Loginov, T. W. Reps, and 3. Sagiv. Abstraction refinement via inductive learn-
ing. In Proc. of 17th International Conference CAK pages 519-533, 2005.
J. Magee and J. Kramer. Concurrency: State Models d Java Programs. John
Wiley & Sons, 1999.
0. Maler and A. Pnueli. On the Learnability of Infinitary Regular Sets. Information
and Computation, 118(2), 1995.

pages 35?--3?0, Apr. 2n02.

Towards a Compositional SPIN 19

27. C. S. P&sHeanu, M. B. Dwyer, and M. Huth. Assume-guarantee model check-
ing of software: A comparative case study. In D. Dams, R. Gerth, S. Leue, and
M. Massink, editors, Theoretical and Practical Aspects of SPIN Model Checking,
volume 1680 of Lecture Notes an Comp. Sci., pages 168-183. Springer-Verlag, Sept.
1999.

28. A. Pnueii. In transition from global to modular temporal reasoning about pro-
grams. In K. Apt, editor, Logic and Models of Concurrent Systems, volume 13,
pages 123-144, New York, 1984. Springer-Verlag.

29. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Using language inference to
verify omega-regular properties. In Proc. of 1 l t h International Conference TACAS,
pages 45-60, 2005.

30. W. Visser, K. Havelund, G. Brat, and S.4. Park. Model checking programs. In
Proc. of the Fifteenth IEEE Int. Conf. on Auto. Soft. Eng., pages 3-12, Sept. 2000.

